Math 241
Winter 2024
Lecture 14 \square

Feb 19-8:47 AM

Consider a Central angle on a circle with radius 10 cm that measures 75°.

1) Find its ${ }_{5}$ arc length

$$
S=r \theta=10 \cdot \frac{5 \pi}{\prod_{6}}=\frac{25 \pi}{6} \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { 2) Find its area. } \\
& A=\frac{1}{2} r^{2} \theta=\frac{1}{2} \cdot 10^{2} \cdot \frac{5 \pi}{12}=\frac{\left.\begin{array}{c}
5 \\
1 \theta \cdot 10 \cdot 5 \pi \\
\frac{2 \cdot 12}{}
\end{array}\right)}{6} \\
& =\frac{\pi}{4}+\frac{\pi}{6} \\
& =\frac{3 \pi+2 \pi}{12}=\frac{5 \pi}{12} \\
& =\frac{125 \pi}{6} \mathrm{~cm}^{2}
\end{aligned}
$$

A Circular wheel makes 20 revolutions per min.

$$
\text { Its radius is } 15 \mathrm{~cm} \text {. } \omega=20 \cdot 2 \pi=40 \pi
$$

Consider the point P on this wheel, find the linear speed of P.

$$
\begin{aligned}
& v=\frac{s}{t} \quad w=\frac{\theta}{t} v \\
&=r \omega \\
& v=15 \cdot 40 \pi \\
&=600 \pi \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Convert 25.875° to DMS.

$$
\begin{aligned}
25.875^{\circ} & =25^{\circ} \quad .875(60)^{\prime} \\
& =25^{\circ} \quad 52.5^{\prime} \\
& =25^{\circ} \quad 52^{\prime} \quad .5(60)^{\prime \prime} \\
& =25^{\circ} 52^{\prime} \quad 30^{\prime \prime}
\end{aligned}
$$

Convert $25^{\circ} 52^{\prime} 30^{\prime \prime}$ to degrees.

$$
=25+\frac{52}{60}+\frac{30}{3600}=25.875^{\circ}
$$

$$
\begin{aligned}
& m \angle A=72^{\circ} 48^{\prime} 50^{\prime \prime} \\
& m \angle B=17^{\circ} 55^{\prime} 30^{\prime \prime}
\end{aligned}
$$

1)

$$
\text { find } \begin{aligned}
\text { 1) } A+B & =89^{\circ} 103^{\prime} 80^{\prime \prime} \\
& =80^{\circ}+44^{\prime} \\
104^{\prime} & 20^{\prime \prime} \\
& =\begin{array}{lll}
90^{\circ} & 44^{\prime} & 20^{\prime \prime}
\end{array}
\end{aligned}
$$

In triangle $A B C, a=6 \mathrm{~cm}, b=10 \mathrm{~cm}$, and $C=12 \mathrm{~cm}$. find angle C.
using Law of Cosines

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& \left\{\begin{array}{c}
\nabla \operatorname{Cos} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
=\frac{6^{2}+10^{2}-12^{2}}{2(6)(10)}
\end{array}\right. \\
& =\frac{36+100-144}{120} \\
& \cos C=\frac{-1}{15} \\
& \cos C=\frac{\frac{78}{\frac{-8}{120}}}{\frac{30}{30}} \begin{array}{c}
15
\end{array}
\end{aligned}
$$

solve

$$
2 A+3=4
$$

$$
\begin{aligned}
& 2 A=4-3 \\
& 2 A=1 \rightarrow A=\frac{1}{2}
\end{aligned}
$$

Solve

$$
2 \cos x+3=4 \text { on }[0,2 \pi)
$$

$$
\left\{\frac{1}{2}\right\}
$$

$$
\begin{array}{r}
2 \cos x=4-3 \\
2 \cos x=1 \\
\cos x=\frac{1}{2}
\end{array}
$$

$$
\begin{array}{l|ll}
+ & x=\frac{\pi}{3} \\
\hline+ & x=2 \pi-
\end{array}
$$

Ref. angle $60^{\circ}=\frac{\pi}{3}$

$$
\text { on }\left[0^{\circ}, 360^{\circ}\right) \rightarrow\left\{60^{\circ}, 300^{\circ}\right\}
$$

General Solutions

$$
\frac{\pi}{3}+2 n \pi, \frac{5 \pi}{3}+2 n \pi
$$

Period for $\sin \varepsilon \cos$ is 2π.

Jan 25-8:42 AM

Solve

$$
\begin{array}{ll}
\sqrt{2} A-6=-7 & \\
\sqrt{2} A=-7+6 & \left.\frac{-\sqrt{2}}{2}\right\} \\
\sqrt{2} A=-1 & A=\frac{-1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \quad A=\frac{-\sqrt{2}}{2}
\end{array}
$$

Solve $\sqrt{2} \sin 2 x-6=-7$

$$
\sin 2 x=\frac{-\sqrt{2}}{2}
$$

QII. $2 x=\pi+\frac{\pi}{4}+2 n \pi$
General Solution
QUE $\quad 2 x=2 \pi-\frac{\pi}{4}+2 n \pi$
$2 x=\frac{5 \pi}{4}+2 n \pi$
Divide by 2

$$
x=\frac{5 \pi}{8}+n \pi
$$

$$
2 x=\frac{7 \pi}{4}+2 n \pi
$$

Divide by 2

$$
x=\frac{7 \pi}{8}+n \pi
$$

what about solutions $[0,2 \pi)$?

$$
\begin{aligned}
& n=0 \rightarrow \frac{5 \pi}{8}, \frac{7 \pi}{8} \\
& n=1 \rightarrow \frac{13 \pi}{8}, \frac{15 \pi}{8} \\
& n=2 \rightarrow \text { No Answers } \\
& \frac{5 \pi}{8}+2 \pi, \frac{5 \pi}{8}+2 \pi
\end{aligned}
$$

Jan 25-9:04 AM

Solve $\sqrt{3} \tan 2 x=3$

$$
\begin{aligned}
& \text { period } \tan 2 x=\frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{3}=\sqrt{3} \\
& \text { dor } \tan 2 x=\sqrt{3} \\
& \text { QI Angle }=\text { RA. }+n \pi \\
& \text { QII Angle }=\pi+R A+n \pi \longrightarrow 2 x=\frac{\pi}{3}+n \pi \quad \longrightarrow 2 x=\pi+\frac{\pi}{3}+n \pi \\
& \left.\begin{array}{l|ll}
x=\frac{\pi}{6}+\frac{n \pi}{2} \\
x=\frac{2 \pi}{3}+\frac{n \pi}{2}
\end{array} \left\lvert\, \begin{array}{ll}
n=0 \rightarrow \frac{\pi}{6}, \frac{2 \pi}{3} & \frac{4 \pi}{3} \\
n=1 \rightarrow \frac{2 \pi}{3}, \frac{7 \pi}{6} & \left\{\frac{\pi}{6}, \frac{2 \pi}{3}, \frac{7 \pi}{6}\right\} \\
5 \pi / 3
\end{array}\right.\right\} \\
& \begin{array}{c}
\left.\frac{\pi}{6}+\frac{\pi}{2}=\frac{4 \pi}{6}=\frac{2 \pi}{3} \quad, \frac{2 \pi}{3}+\frac{\pi}{2}=\frac{7 \pi}{6} \quad \begin{array}{l}
n=2 \rightarrow \frac{7 \pi}{6}, \frac{5 \pi}{3} \\
n=3
\end{array}\right]
\end{array} \\
& \begin{array}{l}
\frac{\pi}{6}+\frac{2 \pi}{2}=\frac{\pi}{6}+\pi=\frac{7 \pi}{6} \\
\frac{2 \pi}{3}+\frac{2 \pi}{2}=\frac{8 \pi}{3}+\pi=\frac{5 \pi}{3}
\end{array} \quad \frac{\pi}{6}+\frac{3 \pi}{2}=\frac{10 \pi}{6}+\frac{5 \pi}{3}
\end{aligned}
$$

Solve
$5 \operatorname{Sin} x+3=0$ over $\left[0^{\circ}, 360^{\circ}\right)$.

$$
\sin x=\frac{-3}{5}
$$

QIII Angle $=180^{\circ}+$ RA. $+n \cdot 360^{\circ}=180^{\circ}+37^{\circ}+n \cdot 360^{\circ}$
QIV Angle $=360^{\circ}-R A+n \cdot 360^{\circ}=360^{\circ}-37^{\circ}+\eta-360^{\circ}$

$$
\begin{aligned}
& x=217^{\circ}+n \cdot 360^{\circ} \\
& x=323^{\circ}+n \cdot 360^{\circ}
\end{aligned} \quad \begin{aligned}
& n=0 \\
& x=217^{\circ}, 323^{\circ}
\end{aligned}
$$

Solve

$$
\sin x-\sqrt{3} \cos x=0
$$

Divide by $\operatorname{Cos} x$, and Simplify

$$
\begin{aligned}
& \frac{\sin x}{\cos x}-\frac{\sqrt{3} \cos x}{\cos x}=\frac{0}{\cos x} \\
& \tan x-\sqrt{3}=0
\end{aligned}
$$

Isolate $\tan x$, identify quadrant, find RA. $\quad \tan x=\sqrt{3}$
QI Angle $=R A+n \cdot$ Period

QIII Angle $=180^{\circ}+R A+n \cdot$ Period

$$
R_{A}=\frac{\pi}{3}=60^{\circ}
$$

$$
\begin{array}{ll}
x=60^{\circ}+n \cdot 180^{\circ} \\
x=180^{\circ}+60^{\circ}+n \cdot 180^{\circ} & \Rightarrow x=60^{\circ}+n \cdot 180^{\circ} \\
x=240^{\circ}+n \cdot 180^{\circ}
\end{array}
$$

$$
\begin{aligned}
& n=0 \rightarrow 60^{\circ}, 240^{\circ} \\
& n \rightarrow 1 \rightarrow 20^{\circ}, 42 Q^{\circ}
\end{aligned} \Rightarrow\left\{60^{\circ}, 240^{\circ}\right\}
$$

Jan 25-10:17 AM

Solve

$$
4 \sin x \cos x=\sqrt{3}
$$

Recall $\sin 2 x=2 \sin x \cos x$

Give all
exact Solutions in Radians

$$
\begin{gathered}
2 \cdot 2 \sin x \cos x=\sqrt{3} \\
2 \cdot \sin 2 x=\sqrt{3} \\
\quad \sin 2 x=\frac{\sqrt{3}}{2}
\end{gathered}
$$

QI Angle $=R A+n \cdot$ period
QI I Angle $=\pi-R A+n \cdot$ Period
QI

$$
\begin{aligned}
& 2 x=\frac{\pi}{3}+n \cdot 2 \pi \rightarrow x=\frac{\pi}{6}+n \pi \\
& 2 x=\left(\pi-\frac{\pi}{3}+n \cdot 2 \pi \rightarrow x=\frac{\pi}{3}+n \pi\right.
\end{aligned}
$$

find all Solutions over $\left[0^{\circ}, 360^{\circ}\right)$ for

$$
\sin 2 x=\cos 2 x+1
$$

Hint: Move $\cos 2 x$ to the left, then Square both Sides.

$$
(\sin 2 x-\cos 2 x)^{2}=1^{2}
$$

$$
(A-B)^{2}=
$$

$$
A^{2}-2 A B+B^{2}
$$

$\sin ^{2} 2 x-2 \sin ^{2} 2 x \cos ^{2} 2 x+\cos ^{2} 2 x=1$

$$
x-2 \sin 2 x \cos 2 x=x
$$

$$
-\sin 2(2 x)=0
$$

$\sin 4 x=0$
Angle $=0^{\circ}+n \cdot$ Period
$0^{\circ}\left\{180^{\circ}\right.$
Angle $=180^{\circ}+n \cdot$ Period
$4 x=0^{\circ}+n \cdot 360^{\circ} \rightarrow x=n \cdot 90^{\circ}$
$4 x=180^{\circ}+n \cdot 360^{\circ} \rightarrow x=45^{\circ}+n \cdot 90^{\circ}$
$\begin{array}{rlrl}n=0 \rightarrow \not x \sqrt{4} & & n=2 \rightarrow 180^{\circ}, 225^{\circ} \\ n=1 \rightarrow 90^{\circ}, 135^{\circ} & n=3 \rightarrow 270^{\circ}, 315^{\circ} \\ \text { check } x=0^{\circ} & x=45^{\circ} \\ \sin 2 x & =\cos 2 x+1 & \sin 2 x=\cos 2 x+1 \\ \sin 0^{\circ} & =\cos 0^{\circ}+1 & \sin 90^{\circ} & =\cos 90^{\circ}+1 \\ 0 & =1+1 & 1 & =0+1 \\ 0 & \neq 2 & 1 & \\ & & & \end{array}$
Anytime You square both
Sides, you must check ans for Possible
Suppose
$\sqrt{A}=-4 \quad$ No Soln.
but

$$
\begin{aligned}
\sqrt{A}=-4 \text { No soln. } \\
\text { If we square both sides }
\end{aligned} \quad \begin{aligned}
\sqrt{16} & =-4 \\
4 & =-4
\end{aligned}
$$

$$
(\sqrt{A})^{2}=(-4)^{2} \rightarrow A=16
$$

Jan 25-10:36 AM

Solve
Find all exact Solutions

$$
2 \sqrt{3} \operatorname{Sin} \frac{x}{2}-3=0 \quad \text { over }[0,2 \pi)
$$

$$
\operatorname{Sin} \frac{x}{2}=\frac{3}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{2 \cdot 3}
$$

$$
\sin \frac{x}{2}=\frac{\sqrt{3}}{2}
$$

QI Angle $=R A+n \cdot$ Period

QII Angle $=\pi-R A+n \cdot P$ Period

$$
\begin{aligned}
\frac{x}{2}=\frac{\pi}{3}+n \cdot 2 \pi & \rightarrow x=\frac{2 \pi}{3}+4 n \pi \\
\frac{x}{2}=\pi-\frac{\pi}{3}+n \cdot 2 \pi & \rightarrow x=\frac{4 \pi}{3}+4 n \pi \\
n=0 & \rightarrow \frac{2 \pi}{3}, \frac{4 \pi}{3}
\end{aligned}
$$

$n=1 \rightarrow$ Outside of $[0,2 \pi)$ Interval

